Skip to content

Strassen's Matrix Multiplication

Published: at 오후 02:17Suggest Changes

Table of contents

Open Table of contents

들어가며

조건: 행렬이 n×nn \times n이며 n은 2의 거듭제곱 우리가 아는 일반적인 방법:

C00=A00B00+A01B10C01=A00B01+A01B11C10=A10B00+A11B10C11=A10B01+A11B11\begin{align} \newline C_{00} = A_{00}B_{00} + A_{01}B_{10} \newline C_{01} = A_{00}B_{01} + A_{01}B_{11} \newline C_{10} = A_{10}B_{00} + A_{11}B_{10} \newline C_{11} = A_{10}B_{01} + A_{11}B_{11} \end{align}

Strassen’s Matrix Multiplication (행렬 곱셈)

Formulas for Strassen’s Algorithm

M1=(A00+A11)(B00+B11)M2=(A10+A11)B00M3=A00(B01B11)M4=A11(B10B00)M5=(A00+A01)B11M6=(A10A00)(B00+B01)M7=(A01A11)(B10+B11)\begin{align} \newline M_1 = (A_{00} + A_{11}) ∗ (B_{00} + B_{11}) \newline M_2 = (A_{10} + A_{11}) ∗ B_{00} \newline M_3 = A_{00} ∗ (B_{01} - B_{11}) \newline M_4 = A_{11} ∗ (B_{10} - B_{00}) \newline M_5 = (A_{00} + A_{01}) ∗ B_{11} \newline M_6 = (A_{10} - A_{00}) ∗ (B_{00} + B_{01}) \newline M_7 = (A_{01} - A_{11}) ∗ (B_{10} + B_{11}) \end{align}

python 코드

def default_matrix_multiplication(a: list, b: list) -> list:
    """
    Multiplication only for 2x2 matrices
    """
    if len(a) != 2 or len(a[0]) != 2 or len(b) != 2 or len(b[0]) != 2:
        raise Exception("Matrices are not 2x2")
    new_matrix = [
        [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
        [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
    ]
    return new_matrix


def matrix_addition(matrix_a: list, matrix_b: list):
    return [
        [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))]
        for row in range(len(matrix_a))
    ]


def matrix_subtraction(matrix_a: list, matrix_b: list):
    return [
        [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))]
        for row in range(len(matrix_a))
    ]


def split_matrix(a: list) -> tuple[list, list, list, list]:
    if len(a) % 2 != 0 or len(a[0]) % 2 != 0:
        raise Exception("Odd matrices are not supported!")

    matrix_length = len(a)
    mid = matrix_length // 2

    top_right = [[a[i][j] for j in range(mid, matrix_length)] for i in range(mid)]
    bot_right = [
        [a[i][j] for j in range(mid, matrix_length)] for i in range(mid, matrix_length)
    ]

    top_left = [[a[i][j] for j in range(mid)] for i in range(mid)]
    bot_left = [[a[i][j] for j in range(mid)] for i in range(mid, matrix_length)]

    return top_left, top_right, bot_left, bot_right


def matrix_dimensions(matrix: list) -> tuple[int, int]:
    return len(matrix), len(matrix[0])


def print_matrix(matrix: list) -> None:
    print("\n".join(str(line) for line in matrix))


def actual_strassen(matrix_a: list, matrix_b: list) -> list:
    if matrix_dimensions(matrix_a) == (2, 2):
        return default_matrix_multiplication(matrix_a, matrix_b)

    a, b, c, d = split_matrix(matrix_a)
    e, f, g, h = split_matrix(matrix_b)

    t1 = actual_strassen(a, matrix_subtraction(f, h))
    t2 = actual_strassen(matrix_addition(a, b), h)
    t3 = actual_strassen(matrix_addition(c, d), e)
    t4 = actual_strassen(d, matrix_subtraction(g, e))
    t5 = actual_strassen(matrix_addition(a, d), matrix_addition(e, h))
    t6 = actual_strassen(matrix_subtraction(b, d), matrix_addition(g, h))
    t7 = actual_strassen(matrix_subtraction(a, c), matrix_addition(e, f))

    top_left = matrix_addition(matrix_subtraction(matrix_addition(t5, t4), t2), t6)
    top_right = matrix_addition(t1, t2)
    bot_left = matrix_addition(t3, t4)
    bot_right = matrix_subtraction(matrix_subtraction(matrix_addition(t1, t5), t3), t7)

    new_matrix = []
    for i in range(len(top_right)):
        new_matrix.append(top_left[i] + top_right[i])
    for i in range(len(bot_right)):
        new_matrix.append(bot_left[i] + bot_right[i])
    return new_matrix


if __name__ == "__main__":
    matrix1 = [[10, 8], [12, 11]]
    matrix2 = [[4, 9], [8, 13]]
    print(actual_strassen(matrix1, matrix2))

How to Run

python version: 3.11.6

Run main.py

pip install pipenv
pipenv --python 3.11.6
pipenv run python3 main.py

Input

하기 두 행렬을 곱함

matrix1 = [[10, 8], [12, 11]]
matrix2 = [[4, 9], [8, 13]]

Output

[[104, 194], [136, 251]]

Execution Image


Previous Post
Chapter 5 Celluar Telephony
Next Post
Karastuba Algorithm (카라추바 알고리즘)